Telegram Group & Telegram Channel
В чём разница между активным обучением (Active Learning) и полунаблюдаемым обучением (Semi-Supervised Learning)

Обе методики помогают работать с недостаточным количеством размеченных данных, но делают это по-разному.

🔍 Активное обучение:
— Фокусируется на выборке самых информативных примеров из неразмеченного пула.
Эти выбранные примеры отправляются эксперту для разметки.
— Цель — максимизировать прирост качества модели на каждый новый размеченный экземпляр, минимизируя трудозатраты на аннотацию.

🔍 Полунаблюдаемое обучение:
— Использует все доступные неразмеченные данные без дополнительной ручной разметки.
— Накладывает ограничения на предсказания модели (например, консистентность, кластеризацию), чтобы улучшить обучение.
— Позволяет модели самостоятельно извлекать дополнительную информацию из неразмеченных данных.

Комбинация подходов:
Оптимальная стратегия часто включает сначала активное обучение для точечной разметки ключевых данных, а затем полунаблюдаемое обучение для извлечения пользы из оставшегося большого объёма неразмеченных примеров.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/974
Create:
Last Update:

В чём разница между активным обучением (Active Learning) и полунаблюдаемым обучением (Semi-Supervised Learning)

Обе методики помогают работать с недостаточным количеством размеченных данных, но делают это по-разному.

🔍 Активное обучение:
— Фокусируется на выборке самых информативных примеров из неразмеченного пула.
Эти выбранные примеры отправляются эксперту для разметки.
— Цель — максимизировать прирост качества модели на каждый новый размеченный экземпляр, минимизируя трудозатраты на аннотацию.

🔍 Полунаблюдаемое обучение:
— Использует все доступные неразмеченные данные без дополнительной ручной разметки.
— Накладывает ограничения на предсказания модели (например, консистентность, кластеризацию), чтобы улучшить обучение.
— Позволяет модели самостоятельно извлекать дополнительную информацию из неразмеченных данных.

Комбинация подходов:
Оптимальная стратегия часто включает сначала активное обучение для точечной разметки ключевых данных, а затем полунаблюдаемое обучение для извлечения пользы из оставшегося большого объёма неразмеченных примеров.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/974

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

Telegram Be The Next Best SPAC

I have no inside knowledge of a potential stock listing of the popular anti-Whatsapp messaging app, Telegram. But I know this much, judging by most people I talk to, especially crypto investors, if Telegram ever went public, people would gobble it up. I know I would. I’m waiting for it. So is Sergei Sergienko, who claims he owns $800,000 of Telegram’s pre-initial coin offering (ICO) tokens. “If Telegram does a SPAC IPO, there would be demand for this issue. It would probably outstrip the interest we saw during the ICO. Why? Because as of right now Telegram looks like a liberal application that can accept anyone - right after WhatsApp and others have turn on the censorship,” he says.

Библиотека собеса по Data Science | вопросы с собеседований from ru


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA